Home About us Editorial board Current issue Ahead of print Archives Submit article Instructions Subscribe Login  Contact Search
Year : 2016  |  Volume : 7  |  Issue : 1  |  Page : 69-72

Screening and bioconversion of glycyrrhizin of Glycyrrhiza glabra root extract to 18β-glycyrrhetinic acid by different microbial strains

1 Microbial and Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India; Department of Pharmaceutics, Buraydah College of Pharmacy and Dentistry, Buraydah, Al-Qassim, Saudi Arabia
2 Microbial and Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India

Correspondence Address:
Bibhu Prasad Panda
Faculty of Pharmacy, Microbial and Pharmaceutical Biotechnology Laboratory, Jamia Hamdard, New Delhi - 110 062
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2394-6555.180170

Rights and Permissions

Objective: The objective of the present study is to perform screening of different microorganisms (7 bacteria and 14 fungi) for conversion of glycyrrhizin (GL) to 18β-glycyrrhetinic acid (GA). Penicillium chrysogenum produced the highest concentration of β-glucuronidase enzyme (61 U/mL) and produced GA of 52 μg/mL while E. coli produced the highest β-glucuronidase of 376 U/mL with GA concentration of 2.1 μg/mL. Materials and Methods: Submerged and solid state biotransformation of GL was carried out. To 9.0 mL of bacterial supernatant, 1.0 mL 0.2% w/v of aqueous Glycyrrhiza glabra root extract was added and incubated at 37°C for 24 h. β-glucuronidase activity was measured and high-performance liquid chromatography analysis was carried out. Results and Discussion: Induced-Escherichia coli produces 2.1 μg/mL of GA with an enzyme activity of 376 U/mL which shows that the enzyme has a potential biotransformation capability. Rhizopus oryzae and P. chrysogenum have the potential ability to biotransform GL to GA with 2.6 μg/mL and 61 μg/mL of GA with enzyme activity of 569 U/mL and 61 U/mL, respectively. Conclusions: G. glabra roots containing GL can be hydrolyzed by microbial β-glucuronidase enzyme under sub-merged fermentation (SmF). β-glucuronidase, an enzyme of E. coli, was found to be the best microbial source of enzyme which biocatalyzed the reaction than fungal strain under SmF.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded193    
    Comments [Add]    

Recommend this journal