Home About us Editorial board Current issue Ahead of print Archives Submit article Instructions Subscribe Login  Contact Search
ORIGINAL ARTICLE
Year : 2016  |  Volume : 7  |  Issue : 2  |  Page : 113-116

Solubility and stability enhancement of curcumin: Improving drug properties of natural pigment


1 Department of Pharmaceutics, College of Pharmacy, Salman Bin Abdul Aziz University, Al-Kharj, Saudi Arabia
2 Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India

Correspondence Address:
Rabea Parveen
Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi - 110 062
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2394-6555.191166

Rights and Permissions

Aim: Water insolubility, low potency, and instability are inherent problems of several herbal medicines. Identity, strength, quality, and purity of herbal products are further compromised during manufacturing and storage. The aim of present work was to evaluate solubility and stability of curcumin, a pigment obtained from dried rhizomes of plant Cucrcuma longa. Materials and Methods: The stoichiometric ratios for inclusion complexation of curcumin with various cyclodextrins (CDs) were determined by phase solubility analysis. Grinding, kneading, and freeze-drying were employed to determine optimum complexation. Complexes were evaluated for drug inclusion, solubility, and stability. Results: Stability constants were 11200 M−1 , 1557 M−1 , 2858 M−1 , and 2206 M−1 for α-, β-, γ-CD, and dimethyl β-CD (DIMEB), respectively, thus indicating good complex formation. Theoretical amounts of curcumin in binary products were between 80% and 97% with a maximum of 96.8% in curcumin-β-CD freeze-dried product. The complexation resulted in a marked improvement in the solubility of curcumin up to 60, 55, 56, and 1500 folds by α-, β-, γ-CD, and DIMEB, respectively. Inclusion complexation protected the drug from hydrolytic degradations as only 20-40% degradation was observed at the end of 8 h as opposed to >70% for pure curcumin. Conclusion: A significant improvement in the solubility and stability was observed with curcumin-CD complex as compared to pure curcumin.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed922    
    Printed6    
    Emailed0    
    PDF Downloaded55    
    Comments [Add]    

Recommend this journal